
User Program and Configuration Management with home-manager
OtaNix Workshop

Niklas Halonen, Joonas von Lerber
2025-01-22
Aalto University

Agenda

1. Introduction and basics
2. Hands-on installation to a VM

❄ Follow along!

1 / 14

2 / 14

What is home-manager (H-M)?

1. A Nix module for managing user applications and services, and their configuration,
a.k.a dotfiles.

2. A CLI for interacting and invoking the H-M module.

Home-manager’s (mostly a reiteration of Nix’s) philosophy:

❄ Reproducibility: building a configuration leads to a unique outcome.
❄ Separation of concerns: enables splitting code into modules and files.
❄ Declarative unified¹ configuration.
❄ Cross reference/link configuration options and variables.

❄ Even integrate to the NixOS configuration.
❄ As always, everything is just a symbolic link to the Nix store.

¹Some H-M modules just provide a configFile option, whereas some have more complex
settings as well as a configFile.

3 / 14

A word of warning

❄ Many modules/services are available on both NixOS and H-M which may conflict
with each other if enabled and may have incompatible configuration options or
varying feature support.

4 / 14

Installation (standalone)

1. Installing nix and git (if not already installed)
2. Starting a shell with home-manager CLI
3. Creating a standalone H-M config repository
4. H-M basics and solving the common OpenGL problem

❄ User programs
❄ User services
❄ Window manager

5. Setting up more complicated H-M integration with FireFox, VSCode

5 / 14

Installing Nix

https://docs.determinate.systems/getting-started/

curl -fsSL https://install.determinate.systems/nix | \
 sh -s -- install --determinate

6 / 14

https://docs.determinate.systems/getting-started/

Creating a standalone H-M config repository

git init ~/dotfiles
nix run home-manager/release-24.11 -- init ~/dotfiles
Note: home-manager/master is the latest unstable version of H-M
cd ~/dotfiles
git add . # Required because flakes ignore files outside of git
nix run home-manager/release-24.11 -- switch --flake ~/dotfiles

7 / 14

Expected outcomes:

❄ (The news are shown)
❄ You have the home-manager program available
❄ dotfiles repository contains the following files

❄ dotfiles
├─ .git/
├─ flake.nix
├─ flake.lock
└─ home.nix

8 / 14

Decrypting the Default Configuration

The default flake.nix is as follows and is all set to start using H-M so you don’t need
to understand any of it right now:

{
 description = "H-M configuration of otanix";

 inputs = {
 # Specify the source of H-M and Nixpkgs.
 nixpkgs.url = "github:nixos/nixpkgs/nixos-
unstable";
 home-manager = {
 url = "github:nix-community/home-manager";
 inputs.nixpkgs.follows = "nixpkgs";
 };
 };

 outputs = { nixpkgs, home-manager, ... }:
 let
 system = "x86_64-linux";
 pkgs = nixpkgs.legacyPackages.${system};
 in {
 homeConfigurations."otanix" =
 home-manager.lib
 .homeManagerConfiguration {
 inherit pkgs;

 # Specify your home configuration
 # modules here, for example,
 # the path to your home.nix.
 modules = [./home.nix];

 # Optionally use extraSpecialArgs
 # to pass through arguments to home.nix
 };
 };
}

9 / 14

Decrypting home.nix

This is more relevant for day-to-day configuration of H-M.

{pkgs, ...}:

let
 # Personal Info
 name = "Matti Meikäläinen";
 email = "matti.meikalainen@iki.fi";
 username = "leet-matti";
 githubUsername = "MattimusUltimatus";

 homeDir = "/home/${username}"
in {

 programs = {
 home-manager.enable = true;
 git = {
 enable = true;
 userName = "${name}";
 userEmail = "${email}";
 }
 fish = {
 enable = true;
 shellAbbrs = {
 "l" = "ls -arthl";
 }
 }
 }
}

10 / 14

How to Install Programs

Under the programs attribute set, you can add programs and configure them. I want
to have Firefox so let’s add it.

programs = {
 firefox = {
 enable = true;
 }
}

11 / 14

Rebuilding the Configuration

1. Make changes to the configuration
2. Git add them
3. Run

home-manager switch --flake ~/dotfiles
4. If there’s an error

❄ Then: decrypt the error message
❄ Else: test out the changes

5. Go back to step 1.

12 / 14

H-M Commands

Some of the useful commands provided by home-manager --help:

Commands
 option OPTION.NAME Inspect configuration option named OPTION.NAME.

 build Build configuration into result directory

 switch Build and activate configuration

 generations List all home environment generations

 packages List all packages installed in home-manager-path

 uninstall Remove Home Manager

13 / 14

Resources

Here are some useful resources for finding H-M

❄ https://nix-community.github.io/home-manager/index.xhtml#sec-flakes-
standalone

❄ https://home-manager-options.extranix.com/

14 / 14

https://nix-community.github.io/home-manager/index.xhtml#sec-flakes-standalone
https://nix-community.github.io/home-manager/index.xhtml#sec-flakes-standalone
https://home-manager-options.extranix.com/

	Agenda
	What is home-manager (H-M)?
	A word of warning
	Installation (standalone)
	Installing Nix
	Creating a standalone H-M config repository
	Decrypting the Default Configuration
	Decrypting home.nix
	How to Install Programs
	Rebuilding the Configuration
	H-M Commands
	Resources

